How and why I give IV fluid

Andrew Shaw MB FRCA FCCM FFICM

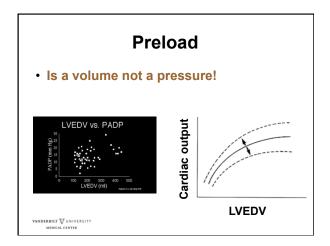
Professor and Chief Cardiothoracic Anesthesiology Vanderbilt University Medical Center

VANDERBILT WUNIVERSITY

2015 Disclosures

- Consultant for Grifols manufacturer of colloid (albumin) products
- Consultant for Baxter manufacturer of crystalloid and colloid products
- SCA Scientific Program Chair

VANDERBILT WUNIVERSITY
MEDICAL CENTER



Fluids and public health

- 30% of ICU patients experience an episode of fluid resuscitation every day
- IV fluids are the commonest inpatient prescription in the world
- Fluid based GDT in the OR has been a cornerstone of ERAS

Basic physiology Cardiac output Afterload Cardiac output Contractility Heart rhythm Preload

Correct Hemodynamics

- Administer fluids, inotropes and vasoactive drugs to restore:-
 - An effective circulation
 - An effective mean arterial pressure
 - An effective oxygen carrying capacity
- Give fluids and drugs according to need and not just as a routine: make the patient earn their fluid (and blood and O₂)
- Deviate from guidelines with a clinical reason to do so

VANDERBILT TUNIVERSITY
MEDICAL CENTER

Clinical Indices of Adequate Perfusion

- Good urine output (1ml/kg/hr)
- · No angina
- · No reduction in conscious level
- Good capillary return
- Warm extremities

VANDERBILT WUNIVERSITY
MEDICAL CENTER

Specific Endpoints

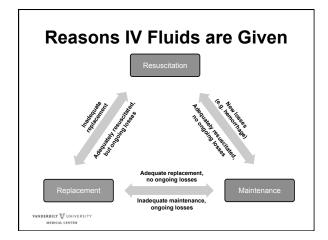
- Blood Pressure: MAP is the main determinant of perfusion in a pulsatile circuit: at least 60 and sometimes 90
- Lactate: High levels correlate with poor outcome. Low levels do not rule out underperfusion
- SvO₂: Useful if low. Normal value does not rule out underperfusion

VANDERBILT TUNIVERSITY

Aims of Fluid Therapy

- Convert hypodynamic situation to normal or hyperdynamic state
- Increase cardiac output until either effective circulation restored or plateau reached on Starling curve
- Blood: Always if Hb < 7 g/dl Never if Hb > 10 g/dl For symptoms if 7-10 g/dl

Aims of Vasoactive Therapy


- Restore MAP when optimum fluid therapy and appropriate inotropic therapy have not
- Vasopressor treatment may be needed emergently while fluid therapy is underway
- All who receive vasoactive therapy in the ICU should have an A-line in place
- · A-lines: Radial Brachial Femoral Axillary

VANDERBILT VUNIVERSITY
MEDICAL CENTER

Fluids in Shock

- 50% of patients with hypotension will respond to fluid therapy alone
- Type not as important as how and how much
- Give by bolus and against an index of preload
- Encourage bedside generation of dynamic Starling curve

VANDERBILT WUNIVERSI

3Rs: Right amount of the Right fluid at the Right time

VANDERBILT WUNIVERSITY
MEDICAL CENTER

Challenges with IV Fluids

- Low awareness of the specific constituents of different fluids
- Little formal education and training exists on fluid management
- · Wide variety in type of fluid charts used
- Fluid requirements are not re-assessed as patient status changes
- Insufficient attention to identify, treat and monitor fluid and electrolyte status

Basic Considerations

- Fluid therapy should be individualized
 - Understand the purpose and goals of giving IV fluid to your specific patient
- · Prescribe IV Fluids like drugs
 - Specific dose
 - Specific indication
- · Reassess routinely
 - Changes in patient status may require a change in fluid prescription

VANDERBILT WUNIVERSIT

Indications and Goals	
Indication	Goal
Resuscitation	Restore / preserve intravascular fluid volume Restore effective tissue perfusion Re-establish and maintain a balance between tissue oxygen demand and supply
Fluid and Electrolyte Replacement	Provide normal daily maintenance requirements plus compensate for abnormal losses Aim to replace like with like: replace fluid lost with fluid of similar composition Consider composition of balanced fluids vs plasma
Maintenance	Provide daily requirements of water and electrolytes • Water 25-35 m/lkg/day • Sodium 1 mmol/kg/day • Potassium 1 mmol/kg/day

Overall Goal for All Patients

- Right Amount
- Right Fluid
- Right Time

VANDERBILT W UNIVERSITY
MEDICAL CENTER

Delivering the

RIGHT AMOUNT

VANDERBILT WUNIVERSITY
MEDICAL CENTER

Fluid Gain in the ICU

- Patients with sepsis in the ICU may gain as much as 12.5 L of body water during the first 2 days of resuscitation
- Excretion of this excess load may take up to 3 weeks
- · This is bad!

VANDERBILT WUNIVERSITY
MEDICAL CENTER

How does this happen?

- Patients receive lots of fluid, lots of sodium chloride
 - Kidneys can't excrete sodium load
 - Chloride causes renal vasoconstriction and exacerbates fluid retention and edema
 - Leaky capillaries in sick patients exacerbates edema
- · Patients don't receive much potassium
 - Potassium depletion reduces ability to excrete sodium

Consequences of excess fluid

- Decreased renal blood flow and GFR
- Intra-mucosal acidosis
- Prolongation of gastric emptying time
- Ileus
- Hyperchloraemic acidosis
- Weight gain
- Low serum sodium due to ADH release
 - Can lead to administration of more sodium
- Cellular dysfunction

VANDERBILT TUNIVERSITY

Sodium Chloride and Volume Depletion

- Reduced stroke volume poor organ perfusion, hypotension
- · Impaired renal perfusion ARF
- · Increased viscosity of mucus
- · Reduced saliva
- Increased blood viscosity can lead to clots

VANDERBILT W UNIVERSITY

Moderation

- The objective of care is restoration of normal physiology and normal function of organs, with a normal blood volume, functional body water, and electrolytes.
- This can never be accomplished by inundation.

VANDERBILT TUNIVERSITY
MEDICAL CENTER

FD Moore & GT Shires, Ann Surg (1967)

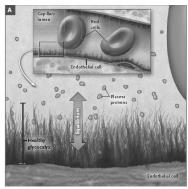
Right Amount of Fluid Depends on Reason IV Fluid is Needed

- Resuscitation
 - Restore circulation and oxygen supply to vital organs with 250 – 500 mL of fluid immediately and monitor response (but what type?)
- Fluid and electrolyte Replacement
 - Amount should incorporate daily maintenance plus any abnormal losses
- Maintenance
 - Amount should be sufficient to maintain normal status in body fluid compartments, and allow kidney to excrete waste products

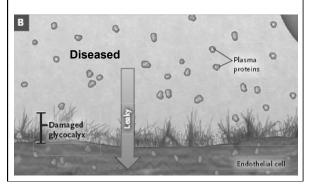
VANDERBILT WUNIVERSI

The Right Amount of Fluid Depends on the Type

Volume effect of colloids:crystalloids was thought to be 1:3


Not True!

Recent data shows the ratio is more likely to be only 1:1.3


VANDERBILT WUNIVERSITY
MEDICAL CENTER

The Endothelial Glycocalyx

Healthy

The Endothelial Glycocalyx

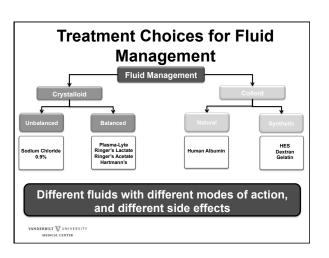
Restrictive or Liberal Strategy?

- Currently: trend towards restrictive fluid strategy
- Commonly accepted definitions of "restrictive" or "liberal" fluid strategies do not exist
- Definition, methodology and results not welldefined in the literature, precluding evidencebased guidelines for procedure-specific perioperative fixed-volume regimens

VANDERBILT WUNIVERSI

Goal-directed Fluid Therapy

- Meta-analyses have shown that cardiac output guided fluid management appears to reduce hospital stay and morbidity
- Goal-directed fluid therapy appears to reduce inflammation, morbidity, and mortality in patients who undergo major surgery


VANDERBILT WUNIVERSITY

Summary: Right Amount of IV Fluid

- Maximum effect with minimum sodium, chloride and water loading
- Before patients can recover, they must excrete the water, sodium and chloride given during resuscitation
- Reason IV fluid is needed must be considered when determining what to administer
- Fluids differ in electrolyte content; choice of fluid matters too

VANDERBILT WUNIVERSITY
MEDICAL CENTER

Delivering the Right Amount of the RIGHT FLUID

Crystalloids and Colloids

Colloid solutions

- Contain large proteins or synthetic glucose polymers which are too large to pass through the walls of capillaries under normal conditions
- Colloids are thought to have greater volume effect compared with crystalloids, but current research shows ratio to only be 1:1.3

VANDERBILT W UNIVERSITY

Crystalloid solutions

- Contain electrolytes (e.g. sodium, potassium, calcium, chloride)
- An isotonic crystalloid solution is distributed in the entire extracellular space (plasma plus interstitial space)

Delivering the Right Amount of the Right Fluid at the

RIGHT TIME

VANDERBILT WUNIVERSIT

Criteria for IV Fluid Administration

- Fluids should be given to address a specific patient need, not because of routine practice
- Objective criteria should be used when:
 - Starting IV fluids
 - Increasing or decreasing IV fluids
 - Stopping IV fluids

VANDERBILT WUNIVERSITY

How do we assess fluid balance?

- · Physical exam
 - "Stethoscope findings" (rales, rhonchi), pulse, weight, skin perfusion/ temperature, urine output and electrolyte concentration, fluid balance charts
- Metabolic monitors
- Lactate, SVO₂, ABG
- · Static monitors
 - BP (MAP), CVP, PAOP
 - Dynamic monitors

 Pulse pressure variation
 - Cardiac output
 - Stroke volume variation
 - Passive leg raise
 Continuous TEE

VANDERBILT WUNIVERSITY

(rales, rhonchi), pulse, weight, skin pe

Key Clinical Questions:

Is the patient fluid deficient?

Is the patient responsive to fluids?

Trends in Fluid Assessment

Liberal fluid strategy

Invasive monitoring

with PACs

Static indices

Restrictive fluid strategy

Minimally invasive monitoring

Dynamic indices

VANDERBILT WUNIVERSITY
MEDICAL CENTER

Signs That a Patient May be Hypovolemic

- Systolic BP < 100 mmHg
- HR > 90 bpm
- Capillary refill > 2 seconds or extremities are cold to touch
- RR > 20 bpm
- · Passive leg raising test is positive
- · Blood pressure drop when sitting up
- · Invisible/collapsing neck veins
- Thirs
- Low urine output

Functional Questions to Consider Prior to Starting Fluids

- · Is tissue oxygenation adequate?
 - Surrogates:
 - · Mixed venous oxygen saturation
 - Central venous oxygenation
 - · Serum lactate
- · Is the patient volume responsive?
- · Is vasomotor tone increased or decreased?
- Is the heart able to sustain an adequate CO when arterial pressure is restored without going into failure?

WANDERBILT W UNIVERSIT

Patient Assessment and Monitoring for Fluid Therapy

- Patient monitoring and reevaluation on a routine basis is crucial for safe fluid therapy
- Reason for IV fluids may change as patient status changes, so IV fluid orders should be re-evaluated frequently
- Goal is to stop IV fluid as soon as patient can meet needs enterally

VANDERBILT WUNIVERS

Summary: The Right Amount of the Right Fluid at the Right Time

- · Fluid therapy should be individualized
 - Understand the purpose and goals of giving IV fluid to your specific patient
- Prescribe IV Fluids like drugs
- Specific dose and indication
- Choose a fluid based on composition and patient needs
 - Default fluid for critically ill should likely be a balanced crystalloid
- Reassess patient using objective measures and adjust fluid prescription accordingly